7 research outputs found

    Covering the Boundary of a Simple Polygon with Geodesic Unit Disks

    Full text link
    We consider the problem of covering the boundary of a simple polygon on n vertices using the minimum number of geodesic unit disks. We present an O(n \log^2 n+k) time 2-approximation algorithm for finding the centers of the disks, with k denoting the number centers found by the algorithm

    Approximation Algorithms for Effective Team Formation

    Full text link
    This dissertation investigates the problem of creating multiple disjoint teams of maximum efficacy from a fixed set of workers. We identify three parameters which directly correlate to the team effectiveness — team expertise, team cohesion and team size — and propose efficient algorithms for optimizing each in various settings. We show that under standard assumptions the problems we explore are not optimally solvable in polynomial time, and thus we focus on developing efficient algorithms with guaranteed worst case approximation bounds. First, we investigate maximizing team expertise in a setting where each worker has different expertise for each job and each job may be completed only by teams of certain sizes. Second, we consider the problem of maximizing team cohesion when the set of workers form a social network with known pairwise compatibility. Third, we explore the problem from a game theoretic perspective in which multiple teams compete on a fixed number of workers and the true needs of each team are pri- vate. We present allocation algorithms that both incentivize teams to state their needs accurately and allocate workers effectively. Finally, we experimentally measure the correlation between team cohesiveness, team expertise and team efficacy on a social network graph of computer science research co-authorship

    The Densest k-Subhypergraph Problem

    Get PDF
    The Densest kk-Subgraph (DkkS) problem, and its corresponding minimization problem Smallest pp-Edge Subgraph (SppES), have come to play a central role in approximation algorithms. This is due both to their practical importance, and their usefulness as a tool for solving and establishing approximation bounds for other problems. These two problems are not well understood, and it is widely believed that they do not an admit a subpolynomial approximation ratio (although the best known hardness results do not rule this out). In this paper we generalize both DkkS and SppES from graphs to hypergraphs. We consider the Densest kk-Subhypergraph problem (given a hypergraph (V,E)(V, E), find a subset WVW\subseteq V of kk vertices so as to maximize the number of hyperedges contained in WW) and define the Minimum pp-Union problem (given a hypergraph, choose pp of the hyperedges so as to minimize the number of vertices in their union). We focus in particular on the case where all hyperedges have size 3, as this is the simplest non-graph setting. For this case we provide an O(n4(43)/13+ϵ)O(n0.697831+ϵ)O(n^{4(4-\sqrt{3})/13 + \epsilon}) \leq O(n^{0.697831+\epsilon})-approximation (for arbitrary constant ϵ>0\epsilon > 0) for Densest kk-Subhypergraph and an O~(n2/5)\tilde O(n^{2/5})-approximation for Minimum pp-Union. We also give an O(m)O(\sqrt{m})-approximation for Minimum pp-Union in general hypergraphs. Finally, we examine the interesting special case of interval hypergraphs (instances where the vertices are a subset of the natural numbers and the hyperedges are intervals of the line) and prove that both problems admit an exact polynomial time solution on these instances.Comment: 21 page

    The Densest kk-Subhypergraph Problem

    Get PDF
    corecore